En Suisse, l'arole croît principalement en Engadine et dans les vallées latérales sud du Valais. Plus de 80% des aroles se rencontrent au-dessus de 1800 m (la moitié est même présente au-dessus de 1960 m); la limite inférieure de l'aire est déterminée par la forte concurrence de l'épicéa.
L'arole est l'essence qui atteint les altitudes les plus élevées en Europe (en Suisse, elle va jusqu'à 2585 m, au-dessus de Saas Fee); c'est aussi celle que l'on trouve le plus souvent sur les sols très acides.
En Suisse, l'aire de répartition de l'arole a été fortement réduite au cours des siècles passés par les défrichements perpétrés à grandeéchelle pour la création d'alpages et par les coupes rases exécutées en vue de récolter du bois.
Source du texte Brändli 1996
Fréquence: nombre de tiges, volume
Placette IFN avec présence du/des ligneux entre 1983 et 2018*
* Les ligneux sélectionnés doivent avoir été recensés pendant au moins deux périodes d’inventaire pour qu’un point apparaisse sur la carte.
région de production | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jura | Plateau | Préalpes | Alpes | Sud des Alpes | Suisse | |||||||
essences d'arbres (60 classes) | 1000 m³ | ± % | 1000 m³ | ± % | 1000 m³ | ± % | 1000 m³ | ± % | 1000 m³ | ± % | 1000 m³ | ± % |
Pinus cembra | . | . | . | . | 56 | 79 | 2475 | 10 | 12 | 61 | 2543 | 10 |
total | 72855 | 2 | 90108 | 2 | 94191 | 2 | 112683 | 2 | 34308 | 3 | 404145 | 1 |
Die in den LFI-Tabellen publizierten Ergebnisse sind Schätzungen für Grössen im Schweizer Wald (Populationsparamter) deren wahre Werte nicht bekannt sind und deshalb aus den Daten der LFI-Stichprobe hochgerechnet (geschätzt) werden müssen.
Die Hochrechnungen sind mit Unsicherheiten behaftet. Aus der als Zufallsstichprobe konzipierten LFI-Stichprobe kann die Genauigkeit der Hochrechnungen aber zuverlässig abgeschätzt werden. In allen LFI-Tabellen wird dazu neben der Schätzung selber eine zweite Zahl angegeben, der Standardfehler der Schätzung.
In den meisten Tabellen wird der prozentuale Standardfehler ausgedruckt, gelegentlich (vor allem bei geschätzten Prozenten) aber auch der absolute Standardfehler. Der Zusammenhang zwischen absolutem und prozentualem Standardfehler ist der folgende:
prozentualer Standardfehler = absoluter Standardfehler / Schätzung x 100
absoluter Standardfehler = prozentualer Standardfehler x Schätzung / 100
Mit der Schätzung selber und dem Standardfehler der Schätzung kann das sogenannte Vertrauensintervall der Schätzung
mit der unteren Grenze
Schätzung - tQ x absoluter Standardfehler
und der oberen Grenze
Schätzung + tQ x absoluter Standardfehler
Mit dem Vertrauensintervall kann statistisch geprüft werden, ob der geschätzte Populationsparameter grösser oder kleiner als ein bestimmter Referenz- oder Zielwert ist, respektive ob sich zwei geschätzte Populationsparameter tatsächlich (in der Population) unterscheiden. Für praktische Zwecke geht man folgendermassen vor: Wenn ein Referenzwert ausserhalb des Vertrauensintervalls liegt, geht man davon aus, dass sich der geschätzte Populationswert signifikant von diesem unterscheidet, liegt er innerhalb, interpretiert man die Differenz zwischen Testergebnis und Referenzwert als zufällig bzw. nicht signifikant. Will man zwei Populationsparameter vergleichen unterscheiden sich diese signifikant, wenn sich ihre Vertrauensintervalle nicht überlappen.
Im LFI gibt es zwei Arten von Veränderungen. Beim ersten Typ von Veränderungen werden spezielle Veränderungszielgrössen (Themen) definiert, wie Zuwachs, Nutzung, Abgang, Mortalität. Diese Zielgrössen (Themen) sind nur für „Veränderungsinventuren“ verfügbar, z.B. LFI3-LFI4b. Bei diesen Auswertungen wird den Befundeinheitsausprägungen für den ersten Inventurzeitpunkt die Ausprägung des zweiten Inventurzeitpunkts zugewiesen, falls sich dieser verändert hat. Diese Auswertungen berücksichtigen somit nicht den Wechsel einer Befundeinheitsausprägung von der früheren zur späteren Inventur, sondern beachten nur die Veränderung aus der (Befundeinheits-) Perspektive der aktuelleren Inventur.
Beim zweiten Typ von Veränderungen wird die Differenz von Zielgrössen, wie Stammzahl, Vorrat oder Waldfläche benutzt, um eine Veränderung aufzuzeigen. Diese Zielgrössen werden üblicherweise für die Darstellung von Zuständen, z.B. dem LFI4b verwendet. Bei diesen Veränderungsauswertungen wird der Wechsel einer Befundeinheitsausprägung bei der Analyse berücksichtigt. So kann man z.B. sehen, dass die Waldfläche ohne Gebüschwald zugenommen hat. Dies hat nur einen Effekt bei solchen Befundeinheiten, die ihre Ausprägung auch tatsächlich wechseln können, z.B. die Zugehörigkeit zur Waldfläche oder der Baumzustand.
région de production | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jura | Plateau | Préalpes | Alpes | Sud des Alpes | Suisse | |||||||
essences d'arbres (60 classes) | m³/n | ± % | m³/n | ± % | m³/n | ± % | m³/n | ± % | m³/n | ± % | m³/n | ± % |
Pinus cembra | . | . | . | . | 0.5 | 9.3 | 0.5 | 6.1 | 0.3 | 55.2 | 0.5 | 6.0 |
total | 0.9 | 2.0 | 1.0 | 2.1 | 1.0 | 2.0 | 0.7 | 1.7 | 0.5 | 3.1 | 0.8 | 0.9 |
Die in den LFI-Tabellen publizierten Ergebnisse sind Schätzungen für Grössen im Schweizer Wald (Populationsparamter) deren wahre Werte nicht bekannt sind und deshalb aus den Daten der LFI-Stichprobe hochgerechnet (geschätzt) werden müssen.
Die Hochrechnungen sind mit Unsicherheiten behaftet. Aus der als Zufallsstichprobe konzipierten LFI-Stichprobe kann die Genauigkeit der Hochrechnungen aber zuverlässig abgeschätzt werden. In allen LFI-Tabellen wird dazu neben der Schätzung selber eine zweite Zahl angegeben, der Standardfehler der Schätzung.
In den meisten Tabellen wird der prozentuale Standardfehler ausgedruckt, gelegentlich (vor allem bei geschätzten Prozenten) aber auch der absolute Standardfehler. Der Zusammenhang zwischen absolutem und prozentualem Standardfehler ist der folgende:
prozentualer Standardfehler = absoluter Standardfehler / Schätzung x 100
absoluter Standardfehler = prozentualer Standardfehler x Schätzung / 100
Mit der Schätzung selber und dem Standardfehler der Schätzung kann das sogenannte Vertrauensintervall der Schätzung
mit der unteren Grenze
Schätzung - tQ x absoluter Standardfehler
und der oberen Grenze
Schätzung + tQ x absoluter Standardfehler
Mit dem Vertrauensintervall kann statistisch geprüft werden, ob der geschätzte Populationsparameter grösser oder kleiner als ein bestimmter Referenz- oder Zielwert ist, respektive ob sich zwei geschätzte Populationsparameter tatsächlich (in der Population) unterscheiden. Für praktische Zwecke geht man folgendermassen vor: Wenn ein Referenzwert ausserhalb des Vertrauensintervalls liegt, geht man davon aus, dass sich der geschätzte Populationswert signifikant von diesem unterscheidet, liegt er innerhalb, interpretiert man die Differenz zwischen Testergebnis und Referenzwert als zufällig bzw. nicht signifikant. Will man zwei Populationsparameter vergleichen unterscheiden sich diese signifikant, wenn sich ihre Vertrauensintervalle nicht überlappen.
Im LFI gibt es zwei Arten von Veränderungen. Beim ersten Typ von Veränderungen werden spezielle Veränderungszielgrössen (Themen) definiert, wie Zuwachs, Nutzung, Abgang, Mortalität. Diese Zielgrössen (Themen) sind nur für „Veränderungsinventuren“ verfügbar, z.B. LFI3-LFI4b. Bei diesen Auswertungen wird den Befundeinheitsausprägungen für den ersten Inventurzeitpunkt die Ausprägung des zweiten Inventurzeitpunkts zugewiesen, falls sich dieser verändert hat. Diese Auswertungen berücksichtigen somit nicht den Wechsel einer Befundeinheitsausprägung von der früheren zur späteren Inventur, sondern beachten nur die Veränderung aus der (Befundeinheits-) Perspektive der aktuelleren Inventur.
Beim zweiten Typ von Veränderungen wird die Differenz von Zielgrössen, wie Stammzahl, Vorrat oder Waldfläche benutzt, um eine Veränderung aufzuzeigen. Diese Zielgrössen werden üblicherweise für die Darstellung von Zuständen, z.B. dem LFI4b verwendet. Bei diesen Veränderungsauswertungen wird der Wechsel einer Befundeinheitsausprägung bei der Analyse berücksichtigt. So kann man z.B. sehen, dass die Waldfläche ohne Gebüschwald zugenommen hat. Dies hat nur einen Effekt bei solchen Befundeinheiten, die ihre Ausprägung auch tatsächlich wechseln können, z.B. die Zugehörigkeit zur Waldfläche oder der Baumzustand.
région de production | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jura | Plateau | Préalpes | Alpes | Sud des Alpes | Suisse | |||||||
essences d'arbres (60 classes) | 1000 n | ± % | 1000 n | ± % | 1000 n | ± % | 1000 n | ± % | 1000 n | ± % | 1000 n | ± % |
Pinus cembra | . | . | . | . | 111 | 83 | 4763 | 10 | 39 | 56 | 4912 | 10 |
total | 84760 | 2 | 91668 | 2 | 95788 | 2 | 156045 | 2 | 67169 | 3 | 495429 | 1 |
Die in den LFI-Tabellen publizierten Ergebnisse sind Schätzungen für Grössen im Schweizer Wald (Populationsparamter) deren wahre Werte nicht bekannt sind und deshalb aus den Daten der LFI-Stichprobe hochgerechnet (geschätzt) werden müssen.
Die Hochrechnungen sind mit Unsicherheiten behaftet. Aus der als Zufallsstichprobe konzipierten LFI-Stichprobe kann die Genauigkeit der Hochrechnungen aber zuverlässig abgeschätzt werden. In allen LFI-Tabellen wird dazu neben der Schätzung selber eine zweite Zahl angegeben, der Standardfehler der Schätzung.
In den meisten Tabellen wird der prozentuale Standardfehler ausgedruckt, gelegentlich (vor allem bei geschätzten Prozenten) aber auch der absolute Standardfehler. Der Zusammenhang zwischen absolutem und prozentualem Standardfehler ist der folgende:
prozentualer Standardfehler = absoluter Standardfehler / Schätzung x 100
absoluter Standardfehler = prozentualer Standardfehler x Schätzung / 100
Mit der Schätzung selber und dem Standardfehler der Schätzung kann das sogenannte Vertrauensintervall der Schätzung
mit der unteren Grenze
Schätzung - tQ x absoluter Standardfehler
und der oberen Grenze
Schätzung + tQ x absoluter Standardfehler
Mit dem Vertrauensintervall kann statistisch geprüft werden, ob der geschätzte Populationsparameter grösser oder kleiner als ein bestimmter Referenz- oder Zielwert ist, respektive ob sich zwei geschätzte Populationsparameter tatsächlich (in der Population) unterscheiden. Für praktische Zwecke geht man folgendermassen vor: Wenn ein Referenzwert ausserhalb des Vertrauensintervalls liegt, geht man davon aus, dass sich der geschätzte Populationswert signifikant von diesem unterscheidet, liegt er innerhalb, interpretiert man die Differenz zwischen Testergebnis und Referenzwert als zufällig bzw. nicht signifikant. Will man zwei Populationsparameter vergleichen unterscheiden sich diese signifikant, wenn sich ihre Vertrauensintervalle nicht überlappen.
Im LFI gibt es zwei Arten von Veränderungen. Beim ersten Typ von Veränderungen werden spezielle Veränderungszielgrössen (Themen) definiert, wie Zuwachs, Nutzung, Abgang, Mortalität. Diese Zielgrössen (Themen) sind nur für „Veränderungsinventuren“ verfügbar, z.B. LFI3-LFI4b. Bei diesen Auswertungen wird den Befundeinheitsausprägungen für den ersten Inventurzeitpunkt die Ausprägung des zweiten Inventurzeitpunkts zugewiesen, falls sich dieser verändert hat. Diese Auswertungen berücksichtigen somit nicht den Wechsel einer Befundeinheitsausprägung von der früheren zur späteren Inventur, sondern beachten nur die Veränderung aus der (Befundeinheits-) Perspektive der aktuelleren Inventur.
Beim zweiten Typ von Veränderungen wird die Differenz von Zielgrössen, wie Stammzahl, Vorrat oder Waldfläche benutzt, um eine Veränderung aufzuzeigen. Diese Zielgrössen werden üblicherweise für die Darstellung von Zuständen, z.B. dem LFI4b verwendet. Bei diesen Veränderungsauswertungen wird der Wechsel einer Befundeinheitsausprägung bei der Analyse berücksichtigt. So kann man z.B. sehen, dass die Waldfläche ohne Gebüschwald zugenommen hat. Dies hat nur einen Effekt bei solchen Befundeinheiten, die ihre Ausprägung auch tatsächlich wechseln können, z.B. die Zugehörigkeit zur Waldfläche oder der Baumzustand.
région de production | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jura | Plateau | Préalpes | Alpes | Sud des Alpes | Suisse | |||||||
essences d'arbres (60 classes) | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± |
Pinus cembra | . | . | . | . | 0.1 | 0.1 | 3.1 | 0.3 | 0.1 | 0.0 | 1.0 | 0.1 |
total | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . |
Die in den LFI-Tabellen publizierten Ergebnisse sind Schätzungen für Grössen im Schweizer Wald (Populationsparamter) deren wahre Werte nicht bekannt sind und deshalb aus den Daten der LFI-Stichprobe hochgerechnet (geschätzt) werden müssen.
Die Hochrechnungen sind mit Unsicherheiten behaftet. Aus der als Zufallsstichprobe konzipierten LFI-Stichprobe kann die Genauigkeit der Hochrechnungen aber zuverlässig abgeschätzt werden. In allen LFI-Tabellen wird dazu neben der Schätzung selber eine zweite Zahl angegeben, der Standardfehler der Schätzung.
In den meisten Tabellen wird der prozentuale Standardfehler ausgedruckt, gelegentlich (vor allem bei geschätzten Prozenten) aber auch der absolute Standardfehler. Der Zusammenhang zwischen absolutem und prozentualem Standardfehler ist der folgende:
prozentualer Standardfehler = absoluter Standardfehler / Schätzung x 100
absoluter Standardfehler = prozentualer Standardfehler x Schätzung / 100
Mit der Schätzung selber und dem Standardfehler der Schätzung kann das sogenannte Vertrauensintervall der Schätzung
mit der unteren Grenze
Schätzung - tQ x absoluter Standardfehler
und der oberen Grenze
Schätzung + tQ x absoluter Standardfehler
Mit dem Vertrauensintervall kann statistisch geprüft werden, ob der geschätzte Populationsparameter grösser oder kleiner als ein bestimmter Referenz- oder Zielwert ist, respektive ob sich zwei geschätzte Populationsparameter tatsächlich (in der Population) unterscheiden. Für praktische Zwecke geht man folgendermassen vor: Wenn ein Referenzwert ausserhalb des Vertrauensintervalls liegt, geht man davon aus, dass sich der geschätzte Populationswert signifikant von diesem unterscheidet, liegt er innerhalb, interpretiert man die Differenz zwischen Testergebnis und Referenzwert als zufällig bzw. nicht signifikant. Will man zwei Populationsparameter vergleichen unterscheiden sich diese signifikant, wenn sich ihre Vertrauensintervalle nicht überlappen.
Im LFI gibt es zwei Arten von Veränderungen. Beim ersten Typ von Veränderungen werden spezielle Veränderungszielgrössen (Themen) definiert, wie Zuwachs, Nutzung, Abgang, Mortalität. Diese Zielgrössen (Themen) sind nur für „Veränderungsinventuren“ verfügbar, z.B. LFI3-LFI4b. Bei diesen Auswertungen wird den Befundeinheitsausprägungen für den ersten Inventurzeitpunkt die Ausprägung des zweiten Inventurzeitpunkts zugewiesen, falls sich dieser verändert hat. Diese Auswertungen berücksichtigen somit nicht den Wechsel einer Befundeinheitsausprägung von der früheren zur späteren Inventur, sondern beachten nur die Veränderung aus der (Befundeinheits-) Perspektive der aktuelleren Inventur.
Beim zweiten Typ von Veränderungen wird die Differenz von Zielgrössen, wie Stammzahl, Vorrat oder Waldfläche benutzt, um eine Veränderung aufzuzeigen. Diese Zielgrössen werden üblicherweise für die Darstellung von Zuständen, z.B. dem LFI4b verwendet. Bei diesen Veränderungsauswertungen wird der Wechsel einer Befundeinheitsausprägung bei der Analyse berücksichtigt. So kann man z.B. sehen, dass die Waldfläche ohne Gebüschwald zugenommen hat. Dies hat nur einen Effekt bei solchen Befundeinheiten, die ihre Ausprägung auch tatsächlich wechseln können, z.B. die Zugehörigkeit zur Waldfläche oder der Baumzustand.
région de production | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jura | Plateau | Préalpes | Alpes | Sud des Alpes | Suisse | |||||||
essences d'arbres (60 classes) | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± |
Pinus cembra | . | . | . | . | 0.1 | 0.0 | 2.2 | 0.2 | 0.0 | 0.0 | 0.6 | 0.1 |
total | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . |
Die in den LFI-Tabellen publizierten Ergebnisse sind Schätzungen für Grössen im Schweizer Wald (Populationsparamter) deren wahre Werte nicht bekannt sind und deshalb aus den Daten der LFI-Stichprobe hochgerechnet (geschätzt) werden müssen.
Die Hochrechnungen sind mit Unsicherheiten behaftet. Aus der als Zufallsstichprobe konzipierten LFI-Stichprobe kann die Genauigkeit der Hochrechnungen aber zuverlässig abgeschätzt werden. In allen LFI-Tabellen wird dazu neben der Schätzung selber eine zweite Zahl angegeben, der Standardfehler der Schätzung.
In den meisten Tabellen wird der prozentuale Standardfehler ausgedruckt, gelegentlich (vor allem bei geschätzten Prozenten) aber auch der absolute Standardfehler. Der Zusammenhang zwischen absolutem und prozentualem Standardfehler ist der folgende:
prozentualer Standardfehler = absoluter Standardfehler / Schätzung x 100
absoluter Standardfehler = prozentualer Standardfehler x Schätzung / 100
Mit der Schätzung selber und dem Standardfehler der Schätzung kann das sogenannte Vertrauensintervall der Schätzung
mit der unteren Grenze
Schätzung - tQ x absoluter Standardfehler
und der oberen Grenze
Schätzung + tQ x absoluter Standardfehler
Mit dem Vertrauensintervall kann statistisch geprüft werden, ob der geschätzte Populationsparameter grösser oder kleiner als ein bestimmter Referenz- oder Zielwert ist, respektive ob sich zwei geschätzte Populationsparameter tatsächlich (in der Population) unterscheiden. Für praktische Zwecke geht man folgendermassen vor: Wenn ein Referenzwert ausserhalb des Vertrauensintervalls liegt, geht man davon aus, dass sich der geschätzte Populationswert signifikant von diesem unterscheidet, liegt er innerhalb, interpretiert man die Differenz zwischen Testergebnis und Referenzwert als zufällig bzw. nicht signifikant. Will man zwei Populationsparameter vergleichen unterscheiden sich diese signifikant, wenn sich ihre Vertrauensintervalle nicht überlappen.
Im LFI gibt es zwei Arten von Veränderungen. Beim ersten Typ von Veränderungen werden spezielle Veränderungszielgrössen (Themen) definiert, wie Zuwachs, Nutzung, Abgang, Mortalität. Diese Zielgrössen (Themen) sind nur für „Veränderungsinventuren“ verfügbar, z.B. LFI3-LFI4b. Bei diesen Auswertungen wird den Befundeinheitsausprägungen für den ersten Inventurzeitpunkt die Ausprägung des zweiten Inventurzeitpunkts zugewiesen, falls sich dieser verändert hat. Diese Auswertungen berücksichtigen somit nicht den Wechsel einer Befundeinheitsausprägung von der früheren zur späteren Inventur, sondern beachten nur die Veränderung aus der (Befundeinheits-) Perspektive der aktuelleren Inventur.
Beim zweiten Typ von Veränderungen wird die Differenz von Zielgrössen, wie Stammzahl, Vorrat oder Waldfläche benutzt, um eine Veränderung aufzuzeigen. Diese Zielgrössen werden üblicherweise für die Darstellung von Zuständen, z.B. dem LFI4b verwendet. Bei diesen Veränderungsauswertungen wird der Wechsel einer Befundeinheitsausprägung bei der Analyse berücksichtigt. So kann man z.B. sehen, dass die Waldfläche ohne Gebüschwald zugenommen hat. Dies hat nur einen Effekt bei solchen Befundeinheiten, die ihre Ausprägung auch tatsächlich wechseln können, z.B. die Zugehörigkeit zur Waldfläche oder der Baumzustand.
région économique | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ouest du Jura | est du Jura | ouest du Plateau | centre du Plateau | est du Plateau | ouest des Préalpes | centre des Préalpes | est des Préalpes | nord-ouest des Alpes | centre des Alpes | nord-est des Alpes | sud-ouest des Alpes | sud-est des Alpes | Sud des Alpes | Suisse | ||||||||||||||||
essences d'arbres (60 classes) | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± |
Pinus cembra | . | . | . | . | . | . | . | . | . | . | . | . | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | 0.4 | . | . | 4.2 | 0.7 | 4.6 | 0.6 | 0.1 | 0.0 | 1.0 | 0.1 |
total | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . |
Die in den LFI-Tabellen publizierten Ergebnisse sind Schätzungen für Grössen im Schweizer Wald (Populationsparamter) deren wahre Werte nicht bekannt sind und deshalb aus den Daten der LFI-Stichprobe hochgerechnet (geschätzt) werden müssen.
Die Hochrechnungen sind mit Unsicherheiten behaftet. Aus der als Zufallsstichprobe konzipierten LFI-Stichprobe kann die Genauigkeit der Hochrechnungen aber zuverlässig abgeschätzt werden. In allen LFI-Tabellen wird dazu neben der Schätzung selber eine zweite Zahl angegeben, der Standardfehler der Schätzung.
In den meisten Tabellen wird der prozentuale Standardfehler ausgedruckt, gelegentlich (vor allem bei geschätzten Prozenten) aber auch der absolute Standardfehler. Der Zusammenhang zwischen absolutem und prozentualem Standardfehler ist der folgende:
prozentualer Standardfehler = absoluter Standardfehler / Schätzung x 100
absoluter Standardfehler = prozentualer Standardfehler x Schätzung / 100
Mit der Schätzung selber und dem Standardfehler der Schätzung kann das sogenannte Vertrauensintervall der Schätzung
mit der unteren Grenze
Schätzung - tQ x absoluter Standardfehler
und der oberen Grenze
Schätzung + tQ x absoluter Standardfehler
Mit dem Vertrauensintervall kann statistisch geprüft werden, ob der geschätzte Populationsparameter grösser oder kleiner als ein bestimmter Referenz- oder Zielwert ist, respektive ob sich zwei geschätzte Populationsparameter tatsächlich (in der Population) unterscheiden. Für praktische Zwecke geht man folgendermassen vor: Wenn ein Referenzwert ausserhalb des Vertrauensintervalls liegt, geht man davon aus, dass sich der geschätzte Populationswert signifikant von diesem unterscheidet, liegt er innerhalb, interpretiert man die Differenz zwischen Testergebnis und Referenzwert als zufällig bzw. nicht signifikant. Will man zwei Populationsparameter vergleichen unterscheiden sich diese signifikant, wenn sich ihre Vertrauensintervalle nicht überlappen.
Im LFI gibt es zwei Arten von Veränderungen. Beim ersten Typ von Veränderungen werden spezielle Veränderungszielgrössen (Themen) definiert, wie Zuwachs, Nutzung, Abgang, Mortalität. Diese Zielgrössen (Themen) sind nur für „Veränderungsinventuren“ verfügbar, z.B. LFI3-LFI4b. Bei diesen Auswertungen wird den Befundeinheitsausprägungen für den ersten Inventurzeitpunkt die Ausprägung des zweiten Inventurzeitpunkts zugewiesen, falls sich dieser verändert hat. Diese Auswertungen berücksichtigen somit nicht den Wechsel einer Befundeinheitsausprägung von der früheren zur späteren Inventur, sondern beachten nur die Veränderung aus der (Befundeinheits-) Perspektive der aktuelleren Inventur.
Beim zweiten Typ von Veränderungen wird die Differenz von Zielgrössen, wie Stammzahl, Vorrat oder Waldfläche benutzt, um eine Veränderung aufzuzeigen. Diese Zielgrössen werden üblicherweise für die Darstellung von Zuständen, z.B. dem LFI4b verwendet. Bei diesen Veränderungsauswertungen wird der Wechsel einer Befundeinheitsausprägung bei der Analyse berücksichtigt. So kann man z.B. sehen, dass die Waldfläche ohne Gebüschwald zugenommen hat. Dies hat nur einen Effekt bei solchen Befundeinheiten, die ihre Ausprägung auch tatsächlich wechseln können, z.B. die Zugehörigkeit zur Waldfläche oder der Baumzustand.