Il sorbo degli uccellatori compare praticamente in tutta Europa. La sua ampia diffusione - anche in quanto ad altitudine - è dovuta alla sua elevata plasticità stazionale. Questa specie arborea di aspetto cespuglioso manca solo in stazioni molto umide e su terreno minerale.
In Svizzera, la diffusione più maggiore si nota nel Giura occidentale e nella catena alpina così come tra 1000 e 1600 m s.l.m. (80%). Il sorbo degli uccellatori sale fino ad un massimo di 2300 m s.l.m.
La presenza di questa specie eliofila è determinata fondamentalmente dalla concorrenza. Cresce in gran parte su pendici esposte a Nord. Preferisce un substrato acido, ma è presente anche su suoli basici. Essenzialmente, e più di ogni altra latifoglia, è diffusa in boschi di conifere. Due terzi dei sorbi degli uccellatori popolano boschi di abete rosso.
testo fonte Brändli 1996
Frequenza: numero di alberi, provvigione
Aree di saggio IFN con presenza di una (o più) specie tra il 1983 e il 2018*
* Affinché una specie venga visualizzata sulla cartina, essa deve essere stata rilevata almeno in due periodi di inventario successivi.
regione di produzione | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Giura | Altopiano | Prealpi | Alpi | Sud delle Alpi | Svizzera | |||||||
specie arborea (60 classi) | 1000 m³ | ± % | 1000 m³ | ± % | 1000 m³ | ± % | 1000 m³ | ± % | 1000 m³ | ± % | 1000 m³ | ± % |
Sorbus aucuparia | 48 | 23 | 12 | 53 | 62 | 22 | 169 | 15 | 33 | 45 | 324 | 11 |
totale | 72855 | 2 | 90108 | 2 | 94191 | 2 | 112683 | 2 | 34308 | 3 | 404145 | 1 |
Die in den LFI-Tabellen publizierten Ergebnisse sind Schätzungen für Grössen im Schweizer Wald (Populationsparamter) deren wahre Werte nicht bekannt sind und deshalb aus den Daten der LFI-Stichprobe hochgerechnet (geschätzt) werden müssen.
Die Hochrechnungen sind mit Unsicherheiten behaftet. Aus der als Zufallsstichprobe konzipierten LFI-Stichprobe kann die Genauigkeit der Hochrechnungen aber zuverlässig abgeschätzt werden. In allen LFI-Tabellen wird dazu neben der Schätzung selber eine zweite Zahl angegeben, der Standardfehler der Schätzung.
In den meisten Tabellen wird der prozentuale Standardfehler ausgedruckt, gelegentlich (vor allem bei geschätzten Prozenten) aber auch der absolute Standardfehler. Der Zusammenhang zwischen absolutem und prozentualem Standardfehler ist der folgende:
prozentualer Standardfehler = absoluter Standardfehler / Schätzung x 100
absoluter Standardfehler = prozentualer Standardfehler x Schätzung / 100
Mit der Schätzung selber und dem Standardfehler der Schätzung kann das sogenannte Vertrauensintervall der Schätzung
mit der unteren Grenze
Schätzung - tQ x absoluter Standardfehler
und der oberen Grenze
Schätzung + tQ x absoluter Standardfehler
Mit dem Vertrauensintervall kann statistisch geprüft werden, ob der geschätzte Populationsparameter grösser oder kleiner als ein bestimmter Referenz- oder Zielwert ist, respektive ob sich zwei geschätzte Populationsparameter tatsächlich (in der Population) unterscheiden. Für praktische Zwecke geht man folgendermassen vor: Wenn ein Referenzwert ausserhalb des Vertrauensintervalls liegt, geht man davon aus, dass sich der geschätzte Populationswert signifikant von diesem unterscheidet, liegt er innerhalb, interpretiert man die Differenz zwischen Testergebnis und Referenzwert als zufällig bzw. nicht signifikant. Will man zwei Populationsparameter vergleichen unterscheiden sich diese signifikant, wenn sich ihre Vertrauensintervalle nicht überlappen.
Im LFI gibt es zwei Arten von Veränderungen. Beim ersten Typ von Veränderungen werden spezielle Veränderungszielgrössen (Themen) definiert, wie Zuwachs, Nutzung, Abgang, Mortalität. Diese Zielgrössen (Themen) sind nur für „Veränderungsinventuren“ verfügbar, z.B. LFI3-LFI4b. Bei diesen Auswertungen wird den Befundeinheitsausprägungen für den ersten Inventurzeitpunkt die Ausprägung des zweiten Inventurzeitpunkts zugewiesen, falls sich dieser verändert hat. Diese Auswertungen berücksichtigen somit nicht den Wechsel einer Befundeinheitsausprägung von der früheren zur späteren Inventur, sondern beachten nur die Veränderung aus der (Befundeinheits-) Perspektive der aktuelleren Inventur.
Beim zweiten Typ von Veränderungen wird die Differenz von Zielgrössen, wie Stammzahl, Vorrat oder Waldfläche benutzt, um eine Veränderung aufzuzeigen. Diese Zielgrössen werden üblicherweise für die Darstellung von Zuständen, z.B. dem LFI4b verwendet. Bei diesen Veränderungsauswertungen wird der Wechsel einer Befundeinheitsausprägung bei der Analyse berücksichtigt. So kann man z.B. sehen, dass die Waldfläche ohne Gebüschwald zugenommen hat. Dies hat nur einen Effekt bei solchen Befundeinheiten, die ihre Ausprägung auch tatsächlich wechseln können, z.B. die Zugehörigkeit zur Waldfläche oder der Baumzustand.
regione di produzione | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Giura | Altopiano | Prealpi | Alpi | Sud delle Alpi | Svizzera | |||||||
specie arborea (60 classi) | m³/n | ± % | m³/n | ± % | m³/n | ± % | m³/n | ± % | m³/n | ± % | m³/n | ± % |
Sorbus aucuparia | 0.1 | 9.1 | 0.1 | 12.7 | 0.1 | 16.6 | 0.1 | 7.8 | 0.1 | 25.7 | 0.1 | 6.1 |
totale | 0.9 | 2.0 | 1.0 | 2.1 | 1.0 | 2.0 | 0.7 | 1.7 | 0.5 | 3.1 | 0.8 | 0.9 |
Die in den LFI-Tabellen publizierten Ergebnisse sind Schätzungen für Grössen im Schweizer Wald (Populationsparamter) deren wahre Werte nicht bekannt sind und deshalb aus den Daten der LFI-Stichprobe hochgerechnet (geschätzt) werden müssen.
Die Hochrechnungen sind mit Unsicherheiten behaftet. Aus der als Zufallsstichprobe konzipierten LFI-Stichprobe kann die Genauigkeit der Hochrechnungen aber zuverlässig abgeschätzt werden. In allen LFI-Tabellen wird dazu neben der Schätzung selber eine zweite Zahl angegeben, der Standardfehler der Schätzung.
In den meisten Tabellen wird der prozentuale Standardfehler ausgedruckt, gelegentlich (vor allem bei geschätzten Prozenten) aber auch der absolute Standardfehler. Der Zusammenhang zwischen absolutem und prozentualem Standardfehler ist der folgende:
prozentualer Standardfehler = absoluter Standardfehler / Schätzung x 100
absoluter Standardfehler = prozentualer Standardfehler x Schätzung / 100
Mit der Schätzung selber und dem Standardfehler der Schätzung kann das sogenannte Vertrauensintervall der Schätzung
mit der unteren Grenze
Schätzung - tQ x absoluter Standardfehler
und der oberen Grenze
Schätzung + tQ x absoluter Standardfehler
Mit dem Vertrauensintervall kann statistisch geprüft werden, ob der geschätzte Populationsparameter grösser oder kleiner als ein bestimmter Referenz- oder Zielwert ist, respektive ob sich zwei geschätzte Populationsparameter tatsächlich (in der Population) unterscheiden. Für praktische Zwecke geht man folgendermassen vor: Wenn ein Referenzwert ausserhalb des Vertrauensintervalls liegt, geht man davon aus, dass sich der geschätzte Populationswert signifikant von diesem unterscheidet, liegt er innerhalb, interpretiert man die Differenz zwischen Testergebnis und Referenzwert als zufällig bzw. nicht signifikant. Will man zwei Populationsparameter vergleichen unterscheiden sich diese signifikant, wenn sich ihre Vertrauensintervalle nicht überlappen.
Im LFI gibt es zwei Arten von Veränderungen. Beim ersten Typ von Veränderungen werden spezielle Veränderungszielgrössen (Themen) definiert, wie Zuwachs, Nutzung, Abgang, Mortalität. Diese Zielgrössen (Themen) sind nur für „Veränderungsinventuren“ verfügbar, z.B. LFI3-LFI4b. Bei diesen Auswertungen wird den Befundeinheitsausprägungen für den ersten Inventurzeitpunkt die Ausprägung des zweiten Inventurzeitpunkts zugewiesen, falls sich dieser verändert hat. Diese Auswertungen berücksichtigen somit nicht den Wechsel einer Befundeinheitsausprägung von der früheren zur späteren Inventur, sondern beachten nur die Veränderung aus der (Befundeinheits-) Perspektive der aktuelleren Inventur.
Beim zweiten Typ von Veränderungen wird die Differenz von Zielgrössen, wie Stammzahl, Vorrat oder Waldfläche benutzt, um eine Veränderung aufzuzeigen. Diese Zielgrössen werden üblicherweise für die Darstellung von Zuständen, z.B. dem LFI4b verwendet. Bei diesen Veränderungsauswertungen wird der Wechsel einer Befundeinheitsausprägung bei der Analyse berücksichtigt. So kann man z.B. sehen, dass die Waldfläche ohne Gebüschwald zugenommen hat. Dies hat nur einen Effekt bei solchen Befundeinheiten, die ihre Ausprägung auch tatsächlich wechseln können, z.B. die Zugehörigkeit zur Waldfläche oder der Baumzustand.
regione di produzione | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Giura | Altopiano | Prealpi | Alpi | Sud delle Alpi | Svizzera | |||||||
specie arborea (60 classi) | 1000 n | ± % | 1000 n | ± % | 1000 n | ± % | 1000 n | ± % | 1000 n | ± % | 1000 n | ± % |
Sorbus aucuparia | 398 | 23 | 151 | 58 | 512 | 18 | 1390 | 13 | 230 | 35 | 2681 | 10 |
totale | 84760 | 2 | 91668 | 2 | 95788 | 2 | 156045 | 2 | 67169 | 3 | 495429 | 1 |
Die in den LFI-Tabellen publizierten Ergebnisse sind Schätzungen für Grössen im Schweizer Wald (Populationsparamter) deren wahre Werte nicht bekannt sind und deshalb aus den Daten der LFI-Stichprobe hochgerechnet (geschätzt) werden müssen.
Die Hochrechnungen sind mit Unsicherheiten behaftet. Aus der als Zufallsstichprobe konzipierten LFI-Stichprobe kann die Genauigkeit der Hochrechnungen aber zuverlässig abgeschätzt werden. In allen LFI-Tabellen wird dazu neben der Schätzung selber eine zweite Zahl angegeben, der Standardfehler der Schätzung.
In den meisten Tabellen wird der prozentuale Standardfehler ausgedruckt, gelegentlich (vor allem bei geschätzten Prozenten) aber auch der absolute Standardfehler. Der Zusammenhang zwischen absolutem und prozentualem Standardfehler ist der folgende:
prozentualer Standardfehler = absoluter Standardfehler / Schätzung x 100
absoluter Standardfehler = prozentualer Standardfehler x Schätzung / 100
Mit der Schätzung selber und dem Standardfehler der Schätzung kann das sogenannte Vertrauensintervall der Schätzung
mit der unteren Grenze
Schätzung - tQ x absoluter Standardfehler
und der oberen Grenze
Schätzung + tQ x absoluter Standardfehler
Mit dem Vertrauensintervall kann statistisch geprüft werden, ob der geschätzte Populationsparameter grösser oder kleiner als ein bestimmter Referenz- oder Zielwert ist, respektive ob sich zwei geschätzte Populationsparameter tatsächlich (in der Population) unterscheiden. Für praktische Zwecke geht man folgendermassen vor: Wenn ein Referenzwert ausserhalb des Vertrauensintervalls liegt, geht man davon aus, dass sich der geschätzte Populationswert signifikant von diesem unterscheidet, liegt er innerhalb, interpretiert man die Differenz zwischen Testergebnis und Referenzwert als zufällig bzw. nicht signifikant. Will man zwei Populationsparameter vergleichen unterscheiden sich diese signifikant, wenn sich ihre Vertrauensintervalle nicht überlappen.
Im LFI gibt es zwei Arten von Veränderungen. Beim ersten Typ von Veränderungen werden spezielle Veränderungszielgrössen (Themen) definiert, wie Zuwachs, Nutzung, Abgang, Mortalität. Diese Zielgrössen (Themen) sind nur für „Veränderungsinventuren“ verfügbar, z.B. LFI3-LFI4b. Bei diesen Auswertungen wird den Befundeinheitsausprägungen für den ersten Inventurzeitpunkt die Ausprägung des zweiten Inventurzeitpunkts zugewiesen, falls sich dieser verändert hat. Diese Auswertungen berücksichtigen somit nicht den Wechsel einer Befundeinheitsausprägung von der früheren zur späteren Inventur, sondern beachten nur die Veränderung aus der (Befundeinheits-) Perspektive der aktuelleren Inventur.
Beim zweiten Typ von Veränderungen wird die Differenz von Zielgrössen, wie Stammzahl, Vorrat oder Waldfläche benutzt, um eine Veränderung aufzuzeigen. Diese Zielgrössen werden üblicherweise für die Darstellung von Zuständen, z.B. dem LFI4b verwendet. Bei diesen Veränderungsauswertungen wird der Wechsel einer Befundeinheitsausprägung bei der Analyse berücksichtigt. So kann man z.B. sehen, dass die Waldfläche ohne Gebüschwald zugenommen hat. Dies hat nur einen Effekt bei solchen Befundeinheiten, die ihre Ausprägung auch tatsächlich wechseln können, z.B. die Zugehörigkeit zur Waldfläche oder der Baumzustand.
regione di produzione | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Giura | Altopiano | Prealpi | Alpi | Sud delle Alpi | Svizzera | |||||||
specie arborea (60 classi) | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± |
Sorbus aucuparia | 0.5 | 0.1 | 0.2 | 0.1 | 0.5 | 0.1 | 0.9 | 0.1 | 0.3 | 0.1 | 0.5 | 0.1 |
totale | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . |
Die in den LFI-Tabellen publizierten Ergebnisse sind Schätzungen für Grössen im Schweizer Wald (Populationsparamter) deren wahre Werte nicht bekannt sind und deshalb aus den Daten der LFI-Stichprobe hochgerechnet (geschätzt) werden müssen.
Die Hochrechnungen sind mit Unsicherheiten behaftet. Aus der als Zufallsstichprobe konzipierten LFI-Stichprobe kann die Genauigkeit der Hochrechnungen aber zuverlässig abgeschätzt werden. In allen LFI-Tabellen wird dazu neben der Schätzung selber eine zweite Zahl angegeben, der Standardfehler der Schätzung.
In den meisten Tabellen wird der prozentuale Standardfehler ausgedruckt, gelegentlich (vor allem bei geschätzten Prozenten) aber auch der absolute Standardfehler. Der Zusammenhang zwischen absolutem und prozentualem Standardfehler ist der folgende:
prozentualer Standardfehler = absoluter Standardfehler / Schätzung x 100
absoluter Standardfehler = prozentualer Standardfehler x Schätzung / 100
Mit der Schätzung selber und dem Standardfehler der Schätzung kann das sogenannte Vertrauensintervall der Schätzung
mit der unteren Grenze
Schätzung - tQ x absoluter Standardfehler
und der oberen Grenze
Schätzung + tQ x absoluter Standardfehler
Mit dem Vertrauensintervall kann statistisch geprüft werden, ob der geschätzte Populationsparameter grösser oder kleiner als ein bestimmter Referenz- oder Zielwert ist, respektive ob sich zwei geschätzte Populationsparameter tatsächlich (in der Population) unterscheiden. Für praktische Zwecke geht man folgendermassen vor: Wenn ein Referenzwert ausserhalb des Vertrauensintervalls liegt, geht man davon aus, dass sich der geschätzte Populationswert signifikant von diesem unterscheidet, liegt er innerhalb, interpretiert man die Differenz zwischen Testergebnis und Referenzwert als zufällig bzw. nicht signifikant. Will man zwei Populationsparameter vergleichen unterscheiden sich diese signifikant, wenn sich ihre Vertrauensintervalle nicht überlappen.
Im LFI gibt es zwei Arten von Veränderungen. Beim ersten Typ von Veränderungen werden spezielle Veränderungszielgrössen (Themen) definiert, wie Zuwachs, Nutzung, Abgang, Mortalität. Diese Zielgrössen (Themen) sind nur für „Veränderungsinventuren“ verfügbar, z.B. LFI3-LFI4b. Bei diesen Auswertungen wird den Befundeinheitsausprägungen für den ersten Inventurzeitpunkt die Ausprägung des zweiten Inventurzeitpunkts zugewiesen, falls sich dieser verändert hat. Diese Auswertungen berücksichtigen somit nicht den Wechsel einer Befundeinheitsausprägung von der früheren zur späteren Inventur, sondern beachten nur die Veränderung aus der (Befundeinheits-) Perspektive der aktuelleren Inventur.
Beim zweiten Typ von Veränderungen wird die Differenz von Zielgrössen, wie Stammzahl, Vorrat oder Waldfläche benutzt, um eine Veränderung aufzuzeigen. Diese Zielgrössen werden üblicherweise für die Darstellung von Zuständen, z.B. dem LFI4b verwendet. Bei diesen Veränderungsauswertungen wird der Wechsel einer Befundeinheitsausprägung bei der Analyse berücksichtigt. So kann man z.B. sehen, dass die Waldfläche ohne Gebüschwald zugenommen hat. Dies hat nur einen Effekt bei solchen Befundeinheiten, die ihre Ausprägung auch tatsächlich wechseln können, z.B. die Zugehörigkeit zur Waldfläche oder der Baumzustand.
regione di produzione | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Giura | Altopiano | Prealpi | Alpi | Sud delle Alpi | Svizzera | |||||||
specie arborea (60 classi) | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± |
Sorbus aucuparia | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 |
totale | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . |
Die in den LFI-Tabellen publizierten Ergebnisse sind Schätzungen für Grössen im Schweizer Wald (Populationsparamter) deren wahre Werte nicht bekannt sind und deshalb aus den Daten der LFI-Stichprobe hochgerechnet (geschätzt) werden müssen.
Die Hochrechnungen sind mit Unsicherheiten behaftet. Aus der als Zufallsstichprobe konzipierten LFI-Stichprobe kann die Genauigkeit der Hochrechnungen aber zuverlässig abgeschätzt werden. In allen LFI-Tabellen wird dazu neben der Schätzung selber eine zweite Zahl angegeben, der Standardfehler der Schätzung.
In den meisten Tabellen wird der prozentuale Standardfehler ausgedruckt, gelegentlich (vor allem bei geschätzten Prozenten) aber auch der absolute Standardfehler. Der Zusammenhang zwischen absolutem und prozentualem Standardfehler ist der folgende:
prozentualer Standardfehler = absoluter Standardfehler / Schätzung x 100
absoluter Standardfehler = prozentualer Standardfehler x Schätzung / 100
Mit der Schätzung selber und dem Standardfehler der Schätzung kann das sogenannte Vertrauensintervall der Schätzung
mit der unteren Grenze
Schätzung - tQ x absoluter Standardfehler
und der oberen Grenze
Schätzung + tQ x absoluter Standardfehler
Mit dem Vertrauensintervall kann statistisch geprüft werden, ob der geschätzte Populationsparameter grösser oder kleiner als ein bestimmter Referenz- oder Zielwert ist, respektive ob sich zwei geschätzte Populationsparameter tatsächlich (in der Population) unterscheiden. Für praktische Zwecke geht man folgendermassen vor: Wenn ein Referenzwert ausserhalb des Vertrauensintervalls liegt, geht man davon aus, dass sich der geschätzte Populationswert signifikant von diesem unterscheidet, liegt er innerhalb, interpretiert man die Differenz zwischen Testergebnis und Referenzwert als zufällig bzw. nicht signifikant. Will man zwei Populationsparameter vergleichen unterscheiden sich diese signifikant, wenn sich ihre Vertrauensintervalle nicht überlappen.
Im LFI gibt es zwei Arten von Veränderungen. Beim ersten Typ von Veränderungen werden spezielle Veränderungszielgrössen (Themen) definiert, wie Zuwachs, Nutzung, Abgang, Mortalität. Diese Zielgrössen (Themen) sind nur für „Veränderungsinventuren“ verfügbar, z.B. LFI3-LFI4b. Bei diesen Auswertungen wird den Befundeinheitsausprägungen für den ersten Inventurzeitpunkt die Ausprägung des zweiten Inventurzeitpunkts zugewiesen, falls sich dieser verändert hat. Diese Auswertungen berücksichtigen somit nicht den Wechsel einer Befundeinheitsausprägung von der früheren zur späteren Inventur, sondern beachten nur die Veränderung aus der (Befundeinheits-) Perspektive der aktuelleren Inventur.
Beim zweiten Typ von Veränderungen wird die Differenz von Zielgrössen, wie Stammzahl, Vorrat oder Waldfläche benutzt, um eine Veränderung aufzuzeigen. Diese Zielgrössen werden üblicherweise für die Darstellung von Zuständen, z.B. dem LFI4b verwendet. Bei diesen Veränderungsauswertungen wird der Wechsel einer Befundeinheitsausprägung bei der Analyse berücksichtigt. So kann man z.B. sehen, dass die Waldfläche ohne Gebüschwald zugenommen hat. Dies hat nur einen Effekt bei solchen Befundeinheiten, die ihre Ausprägung auch tatsächlich wechseln können, z.B. die Zugehörigkeit zur Waldfläche oder der Baumzustand.
regione economica | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Giura Ovest | Giura Est | Altopiano Ovest | Altopiano Centro | Altopiano Est | Prealpi Ovest | Prealpi Centro | Prealpi Est | Alpi Nord-Ovest | Alpi Centro | Alpi Nord-Est | Alpi Sud-Ovest | Alpi Sud-Est | Sud delle Alpi | Svizzera | ||||||||||||||||
specie arborea (60 classi) | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± | % | ± |
Sorbus aucuparia | 0.6 | 0.1 | 0.1 | 0.1 | 0.3 | 0.2 | 0.0 | 0.0 | 0.2 | 0.2 | 1.0 | 0.3 | 0.3 | 0.1 | 0.5 | 0.2 | 1.7 | 0.4 | 0.7 | 0.4 | 0.6 | 0.3 | 1.0 | 0.2 | 0.5 | 0.1 | 0.3 | 0.1 | 0.5 | 0.1 |
totale | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . | 100.0 | . |
Die in den LFI-Tabellen publizierten Ergebnisse sind Schätzungen für Grössen im Schweizer Wald (Populationsparamter) deren wahre Werte nicht bekannt sind und deshalb aus den Daten der LFI-Stichprobe hochgerechnet (geschätzt) werden müssen.
Die Hochrechnungen sind mit Unsicherheiten behaftet. Aus der als Zufallsstichprobe konzipierten LFI-Stichprobe kann die Genauigkeit der Hochrechnungen aber zuverlässig abgeschätzt werden. In allen LFI-Tabellen wird dazu neben der Schätzung selber eine zweite Zahl angegeben, der Standardfehler der Schätzung.
In den meisten Tabellen wird der prozentuale Standardfehler ausgedruckt, gelegentlich (vor allem bei geschätzten Prozenten) aber auch der absolute Standardfehler. Der Zusammenhang zwischen absolutem und prozentualem Standardfehler ist der folgende:
prozentualer Standardfehler = absoluter Standardfehler / Schätzung x 100
absoluter Standardfehler = prozentualer Standardfehler x Schätzung / 100
Mit der Schätzung selber und dem Standardfehler der Schätzung kann das sogenannte Vertrauensintervall der Schätzung
mit der unteren Grenze
Schätzung - tQ x absoluter Standardfehler
und der oberen Grenze
Schätzung + tQ x absoluter Standardfehler
Mit dem Vertrauensintervall kann statistisch geprüft werden, ob der geschätzte Populationsparameter grösser oder kleiner als ein bestimmter Referenz- oder Zielwert ist, respektive ob sich zwei geschätzte Populationsparameter tatsächlich (in der Population) unterscheiden. Für praktische Zwecke geht man folgendermassen vor: Wenn ein Referenzwert ausserhalb des Vertrauensintervalls liegt, geht man davon aus, dass sich der geschätzte Populationswert signifikant von diesem unterscheidet, liegt er innerhalb, interpretiert man die Differenz zwischen Testergebnis und Referenzwert als zufällig bzw. nicht signifikant. Will man zwei Populationsparameter vergleichen unterscheiden sich diese signifikant, wenn sich ihre Vertrauensintervalle nicht überlappen.
Im LFI gibt es zwei Arten von Veränderungen. Beim ersten Typ von Veränderungen werden spezielle Veränderungszielgrössen (Themen) definiert, wie Zuwachs, Nutzung, Abgang, Mortalität. Diese Zielgrössen (Themen) sind nur für „Veränderungsinventuren“ verfügbar, z.B. LFI3-LFI4b. Bei diesen Auswertungen wird den Befundeinheitsausprägungen für den ersten Inventurzeitpunkt die Ausprägung des zweiten Inventurzeitpunkts zugewiesen, falls sich dieser verändert hat. Diese Auswertungen berücksichtigen somit nicht den Wechsel einer Befundeinheitsausprägung von der früheren zur späteren Inventur, sondern beachten nur die Veränderung aus der (Befundeinheits-) Perspektive der aktuelleren Inventur.
Beim zweiten Typ von Veränderungen wird die Differenz von Zielgrössen, wie Stammzahl, Vorrat oder Waldfläche benutzt, um eine Veränderung aufzuzeigen. Diese Zielgrössen werden üblicherweise für die Darstellung von Zuständen, z.B. dem LFI4b verwendet. Bei diesen Veränderungsauswertungen wird der Wechsel einer Befundeinheitsausprägung bei der Analyse berücksichtigt. So kann man z.B. sehen, dass die Waldfläche ohne Gebüschwald zugenommen hat. Dies hat nur einen Effekt bei solchen Befundeinheiten, die ihre Ausprägung auch tatsächlich wechseln können, z.B. die Zugehörigkeit zur Waldfläche oder der Baumzustand.